Step 1: Evaluate the greatest integer values.
We have:
\[
\pi^2 \approx 9.8696 \Rightarrow [\pi^2] = 9, \quad [-\pi^2] = -10
\]
Step 2: Substitute into the function.
The given function is:
\[
f(x) = \cos(9x) + \cos(-10x)
\]
Now, substitute \( x = \frac{\pi}{2} \):
\[
f\left(\frac{\pi}{2}\right) = \cos\left(9 \cdot \frac{\pi}{2}\right) + \cos\left(-10 \cdot \frac{\pi}{2}\right)
\]
\[
f\left(\frac{\pi}{2}\right) = \cos\left(\frac{9\pi}{2}\right) + \cos\left(-5\pi\right)
\]
\[
f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) + \cos(5\pi)
\]
We know that:
\[
\cos\left(\frac{\pi}{2}\right) = 0, \quad \cos(5\pi) = -1
\]
Thus:
\[
f\left(\frac{\pi}{2}\right) = 0 + (-1) = -1
\]