To find the definite integral of the piecewise function \( f(x) \) from 1 to 4, we need to evaluate each piece separately over its respective interval and then sum the results.
Given:
\( f(x) = \begin{cases}
2x + 8, & 1 \le x \le 2 \\
6x, & 2 < x \le 4
\end{cases} \)
We break down the integral \(\int_1^4 f(x) \, dx \) into two parts: \(\int_1^2 (2x+8) \, dx\) and \(\int_2^4 6x \, dx\).
1. For the first interval \(1 \le x \le 2\), compute \(\int_1^2 (2x+8) \, dx\):
- The integral of \((2x+8)\) is: \(\int (2x+8) \, dx = x^2 + 8x + C\).
- Evaluate from 1 to 2:
\[
\left[ x^2 + 8x \right]_1^2 = (2)^2 + 8(2) - \left[(1)^2 + 8(1)\right] = (4 + 16) - (1 + 8) = 20 - 9 = 11
\]
2. For the second interval \(2 < x \le 4\), compute \(\int_2^4 6x \, dx\):
- The integral of \(6x\) is: \(\int 6x \, dx = 3x^2 + C\).
- Evaluate from 2 to 4:
\[
\left[ 3x^2 \right]_2^4 = 3(4^2) - 3(2^2) = 48 - 12 = 36
\]
3. Sum the evaluated values from both intervals: \(11 + 36 = 47\)
Thus, the value of \(\int_1^4 f(x) \, dx\) is:
\[
\boxed{47}
\]