1. Understand the problem:
Given the determinant function \( f(x) \), we need to evaluate \( f(1) \cdot f(3) + f(3) \cdot f(5) + f(5) \cdot f(1) \).
2. Compute \( f(1) \), \( f(3) \), and \( f(5) \):
Substitute \( x = 1, 3, 5 \) into the determinant:
For \( x = 1 \):
\[ f(1) = \begin{vmatrix} -2 & -16 & -79 \\ -4 & -48 & -496 \\ 1 & 2 & 3 \end{vmatrix} \]
For \( x = 3 \):
\[ f(3) = \begin{vmatrix} 0 & 0 & -27 \\ -2 & -32 & -392 \\ 1 & 2 & 3 \end{vmatrix} \]
For \( x = 5 \):
\[ f(5) = \begin{vmatrix} 2 & 0 & -250 \\ 0 & 0 & 0 \\ 1 & 2 & 3 \end{vmatrix} \]
3. Evaluate the determinants:
Using properties of determinants:
- \( f(3) = 0 \) (first row is zero).
- \( f(5) = 0 \) (second row is zero).
- For \( f(1) \), expand along the third row:
\[ f(1) = 1 \cdot (-16 \cdot -496 - (-79) \cdot -48) - 2 \cdot (-2 \cdot -496 - (-79) \cdot -4) + 3 \cdot (-2 \cdot -48 - (-16) \cdot -4) = \text{Non-zero value} \]
4. Compute the required expression:
Since \( f(3) = f(5) = 0 \), the expression simplifies to:
\[ f(1) \cdot 0 + 0 \cdot 0 + 0 \cdot f(1) = 0 \]
Correct Answer: (B) 0
Let the given determinant be $$ f(x) = \begin{vmatrix} x-3 & 2x^2 - 18 & 2x^3 - 81 \\ x-5 & 2x^2 - 50 & 4x^3 - 500 \\ 1 & 2 & 3 \end{vmatrix} $$ We observe that $2x^2 - 18 = 2(x^2 - 9) = 2(x-3)(x+3)$ and $2x^3 - 81 = 2(x^3 - 3^4) = 2(x-3)(x^2 + 3x + 9)$. Then $$ f(3) = \begin{vmatrix} 0 & 0 & 0 \\ x-5 & 2x^2 - 50 & 4x^3 - 500 \\ 1 & 2 & 3 \end{vmatrix} = 0 $$ Since $f(3) = 0$, the expression $f(1)f(3) + f(3)f(5) + f(5)f(1)$ simplifies to $f(5)f(1)$. Now let us compute $f(1)$ and $f(5)$: $$ f(1) = \begin{vmatrix} -2 & -16 & -80 \\ -4 & -48 & -496 \\ 1 & 2 & 3 \end{vmatrix} $$ $$ f(5) = \begin{vmatrix} 2 & 32 & 170 \\ 0 & 0 & 0 \\ 1 & 2 & 3 \end{vmatrix} = 0 $$ Since $f(5) = 0$, the expression becomes 0.
Therefore, $f(1)f(3) + f(3)f(5) + f(5)f(1) = 0$.
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is: 