If f(x) = [a+13 sinx] & x ε (0, \(\pi\)), then number of non-differentiable points of f(x) are [where 'a' is integer]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by
Mathematically, a function is said to be continuous at a point x = a, if
It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is unspecified or does not exist, then we say that the function is discontinuous.