Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
{If \(f(x)\) is a quadratic function such that \(f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{1-x}\right)\), then \(\sqrt{f\left(\frac{2}{3}\right) + f\left(\frac{3}{2}\right)} =\)}
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?
A function is said to be one to one function when f: A → B is One to One if for each element of A there is a distinct element of B.
A function which maps two or more elements of A to the same element of set B is said to be many to one function. Two or more elements of A have the same image in B.
If there exists a function for which every element of set B there is (are) pre-image(s) in set A, it is Onto Function.
A function, f is One – One and Onto or Bijective if the function f is both One to One and Onto function.
Read More: Types of Functions