>
Exams
>
Mathematics
>
Calculus
>
if f x 2 1 x 4 5x 2 1 then find int 0 3 f x dx
Question:
If \(f(x^2 + 1) = x^4 + 5x^2 + 1\), then find \(\int_{0}^{3} f(x) dx\) :
Show Hint
When dealing with \( f(g(x)) \), identifying \( f(x) \) first makes integration much more straightforward than doing substitution inside the integral.
JEE Main - 2026
JEE Main
Updated On:
Jan 28, 2026
13.5
15.3
13
15.5
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Understanding the Concept:
We need to find the explicit expression for \( f(x) \) using substitution.
Step 2: Key Formula or Approach:
Let \( x^2 + 1 = t \implies x^2 = t - 1 \).
Step 3: Detailed Explanation:
Substitute \( x^2 = t - 1 \) into the equation for \( f(x^2+1) \):
\( f(t) = (t-1)^2 + 5(t-1) + 1 \)
\( f(t) = (t^2 - 2t + 1) + 5t - 5 + 1 \)
\( f(t) = t^2 + 3t - 3 \).
So, \( f(x) = x^2 + 3x - 3 \).
Evaluate the integral:
\[ I = \int_{0}^{3} (x^2 + 3x - 3) dx = \left[ \frac{x^3}{3} + \frac{3x^2}{2} - 3x \right]_0^3 \] \[ I = \left( \frac{27}{3} + \frac{27}{2} - 9 \right) - (0) = 9 + 13.5 - 9 = 13.5 \]
Step 4: Final Answer:
The value of the integral is 13.5.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
Let \(x \frac{dy}{dx} - \sin 2y = x^3(2 - x^3) \cos^2 y ; y(2) = 0\), then find \(\tan(y(1))\) :
JEE Main - 2026
Mathematics
Calculus
View Solution
The value of \(S = \sum_{r=1}^{20} \sqrt{\pi \int_{0}^{r} x |\sin \pi x| dx}\) is :
JEE Main - 2026
Mathematics
Calculus
View Solution
Let \(\int \frac{1 - 5 \cos^2 x}{\sin^5 x \cos^2 x} dx = f(x) + c\) then find \(f\left(\frac{\pi}{4}\right) - f\left(\frac{\pi}{6}\right)\) :
JEE Main - 2026
Mathematics
Calculus
View Solution
The value of \(\lim_{x \to 0} \frac{\ln(\sec(ex) \cdot \sec(e^2x) \dots \sec(e^{10}x))}{e^2 - e^{2\cos x}}\) is :
JEE Main - 2026
Mathematics
Calculus
View Solution
Value of : \(\sum_{k=1}^{\infty} \frac{(-1)^k \cdot k(k+1)}{k!}\)
JEE Main - 2026
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in JEE Main exam
If \( a, b, c \) are in A.P. where \( a + b + c = 1 \) and \( a, 2b, c \) are in G.P., then the value of \( 9(a^2 + b^2 + c^2) \) is equal to:
JEE Main - 2026
Number Systems
View Solution
If \[ \lim_{x \to 0} \frac{e^{a(x-1)} + 2\cos(bx) + e^{-x}(c - 1)}{x \cos x - \ln(1 + x)} = 2, \] Then the value of \( a^2 + b^2 + c^2 \) is:
JEE Main - 2026
Geometry
View Solution
Let \( \mathbf{a} = \sqrt{2} \hat{i} \) and \( \mathbf{b} = 5\hat{j} + \hat{k} \). If \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \) and \( \mathbf{c} \) lies in the \( y \)-\( z \) plane such that \( |\mathbf{c}| = 2 \), then the maximum value of \( |\mathbf{c} \cdot \mathbf{d}| \) is equal to:
JEE Main - 2026
Number Systems
View Solution
If \( \alpha, \beta \) are roots of the equation \( 12x^2 - 20x + 3 = 0 \), \( \lambda \in \mathbb{R} \). If \( \frac{1}{2} \leq |\beta - \alpha| \leq \frac{3}{2} \), then the sum of all possible values of \( \lambda \) is:
JEE Main - 2026
Permutation and Combination
View Solution
If \( P(10, 2\sqrt{15}) \) lies on the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and the length of the latus rectum is 8, then the square of the area of \( \Delta PS_1S_2 \) is [where \( S_1 \) and \( S_2 \) are the foci of the hyperbola].
JEE Main - 2026
Geometry
View Solution
View More Questions