If \(f:R\to R\) is defined by \(f(x)=x^2-3x+2,find \,f(f(x)).\)
It is given that \(f:R\to R \,is\,defined \,as f(x)=x^2-3x+2\).
\(f(f(x))=f(x^2-3x+2)\)
= \((x^2-3x+2)^2-3(x^2-3x+2)+2\)
= \(x^4+9x^2+4-6x^3-12x+4x^2-3x^2+9x-6+2\)
= \(x^4-6x^3+10x^2-3x\).
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?