If \(f:\mathbb{R}\rightarrow \mathbb{R}\) is defined by
\[
f(x)=
\begin{cases}
\dfrac{2\sin x-\sin 2x}{2x\cos x}, & x\neq 0 \\
a, & x=0
\end{cases}
\]
then the value of \(a\) so that \(f\) is continuous at \(0\) is
Show Hint
To make piecewise function continuous at 0, set \(a\) equal to \(\lim_{x\to 0}f(x)\). Use identities like \(\sin2x=2\sin x\cos x\).