Question:

If $f(g(x+y)) = f(g(x)) + f(g(y))$, $g(1)=2$, $f(2)=1$, then $g(f(x))$ is discontinuous on:

Show Hint

Cauchy Functional Equation:
  • $f(x+y) = f(x) + f(y)$ implies linearity under continuity.
  • If $f(g(x)) = x$, then $f$ and $g$ are inverses.
  • Identity function is continuous $\Rightarrow$ no discontinuities.
Updated On: May 17, 2025
  • $\mathbb{R}$
  • $(0,\infty)$
  • $(-\infty,0)$
  • $\emptyset$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let $h(x) = f(g(x))$. Given: $h(x+y) = h(x) + h(y)$ \[ h(1) = f(g(1)) = f(2) = 1 \Rightarrow h(x) = x \text{ (Cauchy's eqn)} \Rightarrow f(g(x)) = x \Rightarrow g(f(x)) = x \] Then $g(f(x))$ is identity function $\Rightarrow$ continuous on $\mathbb{R}$
Was this answer helpful?
0
0