Given:
We are tasked with evaluating the following limit:
\[ \lim_{x \to 1} \ln\left( \frac{f(x+2)}{f(3)} \right)^{\frac{18}{(x-1)^2}} \]
1. Simplifying the Expression:
The given expression involves a logarithm and an exponent. We can simplify it using logarithmic properties:
\[ \ln\left( \frac{f(x+2)}{f(3)} \right)^{\frac{18}{(x-1)^2}} = \frac{18}{(x-1)^2} \ln\left( \frac{f(x+2)}{f(3)} \right) \] Thus, the limit becomes: \[ \lim_{x \to 1} \frac{18}{(x-1)^2} \ln\left( \frac{f(x+2)}{f(3)} \right) \]
2. Expanding \( f(x+2) \) Around \( x = 1 \):
We will expand \( f(x+2) \) around \( x = 1 \) using a Taylor expansion. Since \( f(3) = 18 \), \( f'(3) = 0 \), and \( f''(3) = 4 \), we use the Taylor series for \( f(x+2) \) around \( x = 1 \):
\[ f(x+2) \approx f(3) + f'(3)(x-1) + \frac{f''(3)}{2}(x-1)^2 + \cdots \] Substituting the given values, we have: \[ f(x+2) \approx 18 + \frac{4}{2}(x-1)^2 = 18 + 2(x-1)^2 \] Thus: \[ \frac{f(x+2)}{f(3)} = \frac{18 + 2(x-1)^2}{18} = 1 + \frac{2(x-1)^2}{18} \] Now, take the natural logarithm of this expression: \[ \ln\left( 1 + \frac{2(x-1)^2}{18} \right) \] For small \( (x-1) \), we can use the approximation \( \ln(1 + y) \approx y \) when \( y \) is small. So: \[ \ln\left( 1 + \frac{2(x-1)^2}{18} \right) \approx \frac{2(x-1)^2}{18} \]
3. Substituting Back into the Limit:
Substitute this approximation back into the limit expression: \[ \lim_{x \to 1} \frac{18}{(x-1)^2} \cdot \frac{2(x-1)^2}{18} \] Simplifying: \[ \lim_{x \to 1} 2 = 2 \]
Final Answer: The value of the limit is \( \boxed{2} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.