Given:
We are tasked with evaluating the following limit:
\[ \lim_{x \to 1} \ln\left( \frac{f(x+2)}{f(3)} \right)^{\frac{18}{(x-1)^2}} \]
1. Simplifying the Expression:
The given expression involves a logarithm and an exponent. We can simplify it using logarithmic properties:
\[ \ln\left( \frac{f(x+2)}{f(3)} \right)^{\frac{18}{(x-1)^2}} = \frac{18}{(x-1)^2} \ln\left( \frac{f(x+2)}{f(3)} \right) \] Thus, the limit becomes: \[ \lim_{x \to 1} \frac{18}{(x-1)^2} \ln\left( \frac{f(x+2)}{f(3)} \right) \]
2. Expanding \( f(x+2) \) Around \( x = 1 \):
We will expand \( f(x+2) \) around \( x = 1 \) using a Taylor expansion. Since \( f(3) = 18 \), \( f'(3) = 0 \), and \( f''(3) = 4 \), we use the Taylor series for \( f(x+2) \) around \( x = 1 \):
\[ f(x+2) \approx f(3) + f'(3)(x-1) + \frac{f''(3)}{2}(x-1)^2 + \cdots \] Substituting the given values, we have: \[ f(x+2) \approx 18 + \frac{4}{2}(x-1)^2 = 18 + 2(x-1)^2 \] Thus: \[ \frac{f(x+2)}{f(3)} = \frac{18 + 2(x-1)^2}{18} = 1 + \frac{2(x-1)^2}{18} \] Now, take the natural logarithm of this expression: \[ \ln\left( 1 + \frac{2(x-1)^2}{18} \right) \] For small \( (x-1) \), we can use the approximation \( \ln(1 + y) \approx y \) when \( y \) is small. So: \[ \ln\left( 1 + \frac{2(x-1)^2}{18} \right) \approx \frac{2(x-1)^2}{18} \]
3. Substituting Back into the Limit:
Substitute this approximation back into the limit expression: \[ \lim_{x \to 1} \frac{18}{(x-1)^2} \cdot \frac{2(x-1)^2}{18} \] Simplifying: \[ \lim_{x \to 1} 2 = 2 \]
Final Answer: The value of the limit is \( \boxed{2} \).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \]
has infinitely many solutions, then \( \lambda + \mu \) is equal to:



Given below are two statements:
Statement I: All the pairs of molecules \((\mathrm{PbO}, \mathrm{PbO_2}); (\mathrm{SnO}, \mathrm{SnO_2})\) and \((\mathrm{GeO}, \mathrm{GeO_2})\) contain amphoteric oxides.
Statement II: \(\mathrm{AlCl_3}, \mathrm{BH_3}, \mathrm{BeH_2}\) and \(\mathrm{NO_2}\) all have incomplete octet.
In the light of the above statements, choose the correct option.
