The change in enthalpy (\( \Delta H \)) for the combustion of a substance is given by the following equation based on Hess's Law:
\[
\Delta H = \sum \Delta H_f^\circ ({products}) - \sum \Delta H_f^\circ ({reactants})
\]
where:
- \( \Delta H_f^\circ \) is the enthalpy of formation of each substance,
- Products are \( {CO}_2(g) \) and \( {H}_2{O}(l) \),
- Reactants are \( {C}_2{H}_4(g) \).
The combustion reaction for \( {C}_2{H}_4(g) \) is:
\[
{C}_2{H}_4(g) + 3 {O}_2(g) \rightarrow 2 {CO}_2(g) + 2 {H}_2{O}(l)
\]
Step 1: Writing the enthalpy change equation.
\[
\Delta H = \left[ 2 \times \Delta H_f^\circ ({CO}_2) + 2 \times \Delta H_f^\circ ({H}_2{O}) \right] - \left[ \Delta H_f^\circ ({C}_2{H}_4) + 3 \times \Delta H_f^\circ ({O}_2) \right]
\]
Step 2: Substituting the values.
From the given data:
- \( \Delta H_f^\circ ({C}_2{H}_4) = 52 \, {kJ/mol} \),
- \( \Delta H_f^\circ ({CO}_2) = -394 \, {kJ/mol} \),
- \( \Delta H_f^\circ ({H}_2{O}) = -286 \, {kJ/mol} \),
- \( \Delta H_f^\circ ({O}_2) = 0 \, {kJ/mol} \) (since it's an element in its standard state).
So, we have:
\[
\Delta H = \left[ 2 \times (-394) + 2 \times (-286) \right] - \left[ 52 + 3 \times 0 \right]
\]
\[
\Delta H = \left[ -788 + (-572) \right] - 52
\]
\[
\Delta H = -1360 - 52 = -1412 \, {kJ/mol}
\]
Thus, the change in enthalpy for the combustion of \( {C}_2{H}_4 \) is \( -1412 \, {kJ/mol} \).