We begin with the given equation:
\(e^y(x+2)=10\)
To find \(\frac{d^2y}{dx^2}\), we'll first differentiate both sides with respect to \(x\) using implicit differentiation.
Differentiate the left-hand side:
\(\frac{d}{dx}[e^y(x+2)] = e^y\frac{d}{dx}(x+2) + (x+2)\frac{d}{dx}(e^y)\)
\(= e^y \cdot 1 + (x+2)e^y \cdot \frac{dy}{dx}\)
\(= e^y + (x+2)e^y\frac{dy}{dx}\)
The derivative of the right-hand side (10) with respect to \(x\) is zero:
\(\frac{d}{dx}[10] = 0\)
Setting the derivatives equal gives:
\(e^y + (x+2)e^y\frac{dy}{dx} = 0\)
We solve for \(\frac{dy}{dx}\):
\((x+2)e^y\frac{dy}{dx} = -e^y\)
\(\frac{dy}{dx} = \frac{-e^y}{(x+2)e^y}\)
\(\frac{dy}{dx} = \frac{-1}{x+2}\)
Now, differentiate \(\frac{dy}{dx}\) with respect to \(x\) to find \(\frac{d^2y}{dx^2}\):
\(\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{-1}{x+2}\right)\)
Using the quotient rule or recognizing this as a simple derivative of \(-1\) times a reciprocal function:
\(\frac{d}{dx}\left(\frac{-1}{x+2}\right) = \frac{0(x+2) - (-1)}{(x+2)^2}\)
\(= \frac{1}{(x+2)^2}\)
Notice the sign, the negative remains inside:
\(\frac{d^2y}{dx^2} = \left(\frac{1}{(x+2)^2}\right) = \left(\frac{1}{x+2}\right)^2\)
Since \(\frac{dy}{dx} = \frac{-1}{x+2}\), we find:
\(\left(\frac{dy}{dx}\right)^2 = \left(\frac{-1}{x+2}\right)^2\)
\(= \left(\frac{1}{x+2}\right)^2\)
Thus, \(\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2\).
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.
Show that \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in \( \left[ 0, \frac{\pi}{4} \right] \).