If $e^{(\cos^2 x + \cos^4 x + \cos^6 x + .......) \log_e 2}$ satisfies $t^2 - 9t + 8 = 0$, then find $\frac{2 \sin x}{\sin x + \sqrt{3} \cos x}$ for $0<x<\pi/2$ :
Show Hint
For infinite geometric series in exponents, always simplify the series first. $a^x$ is equivalent to $e^{x \ln a}$.