Let us write the integrand as:
\[
\frac{3x+2}{4x^2+4x+5}
\]
We observe the denominator is quadratic. Try substitution or decomposition. Complete the square in the denominator:
\[
4x^2+4x+5 = 4(x^2+x) + 5 = 4\left(x+\frac{1}{2}\right)^2 + 4
\]
Now, use the standard form:
\[
\int \frac{ax + b}{(x + c)^2 + d^2} dx = A \log((x + c)^2 + d^2) + B \tan^{-1} \left( \frac{x + c}{d} \right)
\]
Match to get:
\[
A = \frac{3}{8}, \quad B = \frac{1}{8}
\]