We are given:
\[
\int_{3}^{b} \frac{x - 1}{2x - x^2} \, dx = \frac{1}{2}
\]
First simplify the integrand:
\[
\frac{x - 1}{2x - x^2} = \frac{x - 1}{x(2 - x)}
\]
Use partial fractions:
\[
\frac{x - 1}{x(2 - x)} = \frac{x - 1}{-x(x - 2)} = \frac{A}{x} + \frac{B}{x - 2}
\]
Solve:
\[
\frac{x - 1}{-x(x - 2)} = \frac{A}{x} + \frac{B}{x - 2}
\Rightarrow x - 1 = -A(x - 2) - Bx
\Rightarrow x - 1 = -Ax + 2A - Bx
\Rightarrow x - 1 = -x(A + B) + 2A
\]
Matching coefficients:
\[
-A - B = 1, \quad 2A = -1 \Rightarrow A = -\frac{1}{2}, \quad B = -\frac{1}{2}
\]
So,
\[
\int_{3}^{b} \frac{x - 1}{2x - x^2} dx
= \int_{3}^{b} \left(-\frac{1}{2x} - \frac{1}{2(x - 2)}\right) dx
\]
Integrate:
\[
= -\frac{1}{2} \left[ \ln |x| + \ln |x - 2| \right]_3^b
= -\frac{1}{2} \ln \left( \frac{b(b - 2)}{3(1)} \right)
= \frac{1}{2} \ln \left( \frac{3}{b(b - 2)} \right)
\]
We are told this equals \( \frac{1}{2} \), so:
\[
\frac{1}{2} \ln \left( \frac{3}{b(b - 2)} \right) = \frac{1}{2}
\Rightarrow \ln \left( \frac{3}{b(b - 2)} \right) = 1
\Rightarrow \frac{3}{b(b - 2)} = e
\Rightarrow b(b - 2) = \frac{3}{e}
\Rightarrow b^2 - 2b = \frac{3}{e}
\]
Complete the square:
\[
b^2 - 2b + 1 = \frac{3}{e} + 1 \Rightarrow (b - 1)^2 = \boxed{1 + \frac{3}{e}}
\]