Let ABCD be a cyclic quadrilateral having diagonals BD and AC, intersecting each other at point O.
∠BAD=\(\frac{1}{2}\)∠BOD=\(\frac{180^∘}{2}\)=90°
∠BCD+∠BAD=180∘ (Cyclic quadrilateral) (Consider BD as a chord)
∠BCD=180∘−90∘=90°
∠ADC=\(\frac{1}{2}\)∠AOC=\(\frac{1}{2}\)(180)=90
∠ADC + ∠ABC = 180° (Cyclic quadrilateral) °+∠ABC = 180° 90°
∠ADC+∠ABC=180∘ (Opposite angles of a cyclic quadrilateral)
90 °+∠ABC=180∘
ABC = 90° (Considering AC as a chord)
Each interior angle of a cyclic quadrilateral is of 90°. Hence, it is a rectangle.
In Fig. 9.23, A,B and C are three points on a circle with centre O such that ∠ BOC = 30° and ∠ AOB = 60°. If D is a point on the circle other than the arc ABC, find ∠ADC.
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
In Fig, ∠ ABC = 69°, ∠ ACB = 31°, find ∠ BDC.
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?