Step 1: Separate the differential equation
\[
\frac{dy}{dx} = 8y^2x^3
\]
This is separable:
\[
\frac{dy}{y^2} = 8x^3 dx
\]
Step 2: Integrate both sides
\[
\int \frac{dy}{y^2} = \int 8x^3 dx
\]
\[
- \frac{1}{y} = 2x^4 + C
\]
Step 3: Apply initial condition $y(2) = 1$
\[
- \frac{1}{1} = 2(2^4) + C
\]
\[
-1 = 32 + C \Rightarrow C = -33
\]
Step 4: General solution
\[
- \frac{1}{y} = 2x^4 - 33
\]
\[
\frac{1}{y} = 33 - 2x^4
\]
Step 5: Find $\dfrac{1{y(0)}$}
At $x=0$:
\[
\frac{1}{y(0)} = 33 - 2(0)^4 = 33
\]
Final Answer:
\[
\frac{1}{y(0)} = 33
\]