Question:

If \( \cosh 2x = 199 \), then \( \cot hx = \)

Show Hint

Use the identity \( \cosh(2x) = 2\sinh^2 x + 1 \) and \( \cosh^2 x - \sinh^2 x = 1 \) to relate hyperbolic functions.
Updated On: Jun 4, 2025
  • \( \dfrac{5}{3\sqrt{11}} \)
  • \( \dfrac{5}{6\sqrt{11}} \)
  • \( \dfrac{7}{3\sqrt{11}} \)
  • \( \dfrac{10}{3\sqrt{11}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given: \[ \cosh(2x) = 199 \] We know the identity: \[ \cosh(2x) = 2\sinh^2 x + 1 \Rightarrow 2\sinh^2 x = 198 \Rightarrow \sinh^2 x = 99 \] Also, \[ \cosh^2 x - \sinh^2 x = 1 \Rightarrow \cosh^2 x = 100 \Rightarrow \cosh x = \sqrt{100} = 10 \] So, \[ \cot hx = \frac{\cosh x}{\sinh x} = \frac{10}{\sqrt{99}} = \frac{10}{3\sqrt{11}} \]
Was this answer helpful?
0
0

AP EAPCET Notification