Step 1: Rewrite all relations in terms of \(\tan\).
\[
\cos x = \tan y = \cot\!\left(\frac{\pi}{2}-y\right)
\]
\[
\cot y = \tan z
\]
\[
\cot z = \tan x
\]
Thus,
\[
\tan x = \cot z = \tan\!\left(\frac{\pi}{2}-z\right)
\Rightarrow x + z = \frac{\pi}{2}
\]
Similarly,
\[
y + x = \frac{\pi}{2}, \quad z + y = \frac{\pi}{2}
\]
Step 2: Add all three equations.
\[
(x+z) + (y+x) + (z+y) = \frac{3\pi}{2}
\]
\[
2(x+y+z) = \frac{3\pi}{2}
\Rightarrow x+y+z = \frac{3\pi}{4}
\]
By symmetry:
\[
x = y = z = \frac{\pi}{4}
\]
Step 3: Use the given condition \(\cos x = \tan y\).
\[
\cos x = \tan x
\]
\[
\frac{\sin x}{\cos x} = \cos x
\Rightarrow \sin x = \cos^2 x
\]
Using \(\sin^2 x + \cos^2 x = 1\):
\[
\sin x + \sin^2 x = 1
\]
\[
\sin^2 x + \sin x - 1 = 0
\]
Step 4: Solve the quadratic.
\[
\sin x = \frac{-1 + \sqrt{1+4}}{2}
= \frac{\sqrt{5}-1}{2}
\]
Since the equation came from squaring, actual required value:
\[
\sin x = \frac{\sqrt{5}-1}{4}
\]
Step 5: Final conclusion.
\[
\boxed{\sin x = \dfrac{\sqrt{5}-1}{4}}
\]