Given the differential equation:
\[
\cos x \frac{dy}{dx} - y \sin x = 6x, \quad 0 < x < \frac{\pi}{2}
\]
with the initial condition:
\[
y\left(\frac{\pi}{3}\right) = 0
\]
Find \( y\left(\frac{\pi}{6}\right) \).
Step 1: Rewrite the differential equation:
\[
\cos x \frac{dy}{dx} = y \sin x + 6x
\]
\[
\frac{dy}{dx} = y \tan x + \frac{6x}{\cos x}
\]
Step 2: This is a linear differential equation of the form:
\[
\frac{dy}{dx} - y \tan x = \frac{6x}{\cos x}
\]
with integrating factor (IF):
\[
\mu(x) = e^{-\int \tan x \, dx} = e^{\ln \cos x} = \cos x
\]
Step 3: Multiply both sides by IF:
\[
\cos x \frac{dy}{dx} - y \sin x = 6x
\]
which matches the original equation, confirming IF.
Step 4: The left side is the derivative of \( y \cos x \):
\[
\frac{d}{dx} (y \cos x) = 6x
\]
Integrate both sides:
\[
y \cos x = \int 6x \, dx + C = 3x^2 + C
\]
Step 5: Solve for \( y \):
\[
y = \frac{3x^2 + C}{\cos x}
\]
Step 6: Apply initial condition \( y(\frac{\pi}{3}) = 0 \):
\[
0 = \frac{3 \left(\frac{\pi}{3}\right)^2 + C}{\cos \frac{\pi}{3}} = \frac{3 \times \frac{\pi^2}{9} + C}{\frac{1}{2}} = 2 \left( \frac{\pi^2}{3} + C \right)
\]
\[
\implies \frac{\pi^2}{3} + C = 0 \implies C = -\frac{\pi^2}{3}
\]
Step 7: Find \( y(\frac{\pi}{6}) \):
\[
y\left(\frac{\pi}{6}\right) = \frac{3 \left(\frac{\pi}{6}\right)^2 - \frac{\pi^2}{3}}{\cos \frac{\pi}{6}} = \frac{3 \times \frac{\pi^2}{36} - \frac{\pi^2}{3}}{\frac{\sqrt{3}}{2}} = \frac{\frac{\pi^2}{12} - \frac{\pi^2}{3}}{\frac{\sqrt{3}}{2}} = \frac{-\frac{\pi^2}{4}}{\frac{\sqrt{3}}{2}} = -\frac{\pi^2}{4} \times \frac{2}{\sqrt{3}} = -\frac{\pi^2}{2 \sqrt{3}}
\]
Therefore,
\[
\boxed{ y\left(\frac{\pi}{6}\right) = -\frac{\pi^2}{2 \sqrt{3}} }
\]