Question:

If cosα+4cosβ+9cosγ=0andsinα+4sinβ+9sinγ=0, \cos \alpha + 4 \cos \beta + 9 \cos \gamma = 0 \quad \text{and} \quad \sin \alpha + 4 \sin \beta + 9 \sin \gamma = 0, then 81cos(2γ2α)16cos(2β2α)=? 81 \cos (2\gamma - 2\alpha) - 16 \cos (2\beta - 2\alpha) = ?

Show Hint

When dealing with trigonometric identities, express sums of sines and cosines in exponential form for easier simplifications.
Updated On: Mar 24, 2025
  • 1+8cos(βα) 1 + 8 \cos (\beta - \alpha)
  • cos(βα) \cos (\beta - \alpha)
  • 136cos(βα) 1 - 36 \cos (\beta - \alpha)
  • 1+6cos(βα) 1 + 6 \cos (\beta - \alpha)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Step 1: Understanding the given equations 
The given trigonometric equations: cosα+4cosβ+9cosγ=0, \cos \alpha + 4 \cos \beta + 9 \cos \gamma = 0, sinα+4sinβ+9sinγ=0 \sin \alpha + 4 \sin \beta + 9 \sin \gamma = 0 imply that the sum of the weighted cosine and sine components results in zero. 

Step 2: Expressing in complex form 
Rewriting these equations in exponential form: eiα+4eiβ+9eiγ=0. e^{i \alpha} + 4 e^{i \beta} + 9 e^{i \gamma} = 0. Taking modulus on both sides gives: eiα+4eiβ+9eiγ=0. \left| e^{i \alpha} + 4 e^{i \beta} + 9 e^{i \gamma} \right| = 0. Since modulus represents distance in the complex plane, it means that the three points represented by eiα,eiβ,eiγ e^{i\alpha}, e^{i\beta}, e^{i\gamma} satisfy a specific geometric property. 

Step 3: Deriving the required expression 
From trigonometric identities and simplifications, we obtain: 81cos(2γ2α)16cos(2β2α)=1+8cos(βα). 81 \cos (2\gamma - 2\alpha) - 16 \cos (2\beta - 2\alpha) = 1 + 8 \cos (\beta - \alpha).  

Step 4: Conclusion 
Thus, the correct answer is: 1+8cos(βα). \boxed{1 + 8 \cos (\beta - \alpha)}.

Was this answer helpful?
0
0

Top Questions on Trigonometry

View More Questions