To find the value of \( \lambda \) given \( \cos A = m \cos B \) and \( \cot \left( \frac{A+B}{2} \right) = \lambda \tan \left( \frac{B-A}{2} \right) \), follow these steps:
Let's use the identities for cosine and tangent of sum and difference:
1. Use the identity:
\[\cos A = m \cos B \Rightarrow \frac{\cos A}{\cos B} = m.\]
Translate this using angle difference identities:
\[\frac{\cos A + \cos B}{2 \cos \frac{A+B}{2} \cos \frac{B-A}{2}} = m\]
Use the sum-to-product identities, where:
\[\cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{B-A}{2} \right)\]
Substitute back:
\[\frac{2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{B-A}{2} \right)}{2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{B-A}{2} \right)} = \frac{1}{m}\]
Therefore:
\[\frac{1}{m} = \left(1+\frac{A+B}{2}\right)\left(1+\frac{B-A}{2}\right)\]
This expression simplifies and links to the second condition which involves tangent and cotangent:
\[\tan \left( \frac{B-A}{2} \right) = \frac{\sin \left( \frac{B-A}{2} \right)}{\cos \left( \frac{B-A}{2} \right)}\]
and
\[\cot \left( \frac{A+B}{2} \right) = \frac{\cos \left( \frac{A+B}{2} \right)}{\sin \left( \frac{A+B}{2} \right)}\]
Given:
\[\cot \left( \frac{A+B}{2} \right) = \lambda \tan \left( \frac{B-A}{2} \right)\]
Express
\[\cos \left( \frac{A+B}{2} \right) / \sin \left( \frac{A+B}{2} \right) = \lambda \cdot \frac{\sin \left( \frac{B-A}{2} \right)}{\cos \left( \frac{B-A}{2} \right)}\]
Simplify this equation by matching cross terms:
Using addition and subtraction angle formula:
Rewrite the relationship:
\[\left( \frac{\sin \left( \frac{B-A}{2} \right)}{\sin \left( \frac{A+B}{2} \right)} \right) \approx 1\]
Now compare and simplify the expression:
\[\lambda = \frac{\cos \left( \frac{A+B}{2} \right) \cdot \cos \left( \frac{B-A}{2} \right)}{\sin^2 \left( \frac{A+B}{2} \right)}\]
Conclusion relating back from original conditions gives:
\[\lambda = \frac{m+1}{m-1}\]
The correct answer is \(\frac{m+1}{m-1}\).