Let the original roots be \( c \) and \( d \). Then:
\[
c + d = -a,\quad cd = b
\]
Let us check if \( d - 2c \) satisfies the new equation:
Plug \( x = d - 2c \) into:
\[
x^2 + (4c + a)x + (b + 2ac + 4c^2)
\]
Use known identities:
\[
x^2 = (d - 2c)^2 = d^2 - 4cd + 4c^2
\]
\[
(4c + a)x = (4c + a)(d - 2c) = 4cd + ad - 8c^2 - 2ac
\]
Add:
\[
x^2 + (4c + a)x = d^2 - 4cd + 4c^2 + 4cd + ad - 8c^2 - 2ac = d^2 + ad - 4c^2 - 2ac
\]
Now add the constant term:
\[
b + 2ac + 4c^2 = cd + 2ac + 4c^2
\]
Total expression:
\[
d^2 + ad - 4c^2 - 2ac + cd + 2ac + 4c^2 = d^2 + ad + cd
\]
Factor:
\[
d(a + d + c) = d( -c + d + c) = d^2 \Rightarrow \text{So total is } d^2 + ad + cd = 0 \text{ (since from equation)}
\]
\[
\Rightarrow x = d - 2c \text{ is a root}
\]