If both the roots of the equation
\[
x^2-2ax+a^2-1=0 \quad (a\in\mathbb{R})
\]
lie in the interval \((-2,2)\), then the equation
\[
x^2-(a^2+1)x-(a^2+2)=0
\]
has:
Show Hint
When roots are restricted to an interval, first determine the parameter range,
then use sign analysis of the polynomial to locate roots in specific subintervals.
one root in \((0,2)\) and another root in \((-2,0)\)
one root in \((2,3)\) and another root in \((-2,0)\)
one root in \((-3,-2)\) and another root in \((0,2)\)
Hide Solution
Verified By Collegedunia
The Correct Option isC
Solution and Explanation
Step 1: Analyze the first equation
\[
x^2-2ax+a^2-1=0
\]
Rewrite:
\[
(x-a)^2=1
\]
So the roots are:
\[
x=a\pm 1
\]
Given that both roots lie in \((-2,2)\):
\[
-2<a-1<2 \quad \text{and} \quad -2<a+1<2
\]
From these:
\[
-1<a<3 \quad \text{and} \quad -3<a<1
\]
Combining:
\[
-1<a<1
\]
Step 2: Analyze the second equation
\[
x^2-(a^2+1)x-(a^2+2)=0
\]
Sum of roots:
\[
\alpha+\beta=a^2+1>0
\]
Product of roots:
\[
\alpha\beta=-(a^2+2)<0
\]
Hence, one root is positive and the other is negative.
Step 3: Locate the roots
Evaluate the polynomial at key points (using \(|a|<1\)):
\[
f(0)=-(a^2+2)<0
\]
\[
f(2)=4-2(a^2+1)-(a^2+2)=-3a^2<0
\]
\[
f(3)=9-3(a^2+1)-(a^2+2)=4-4a^2>0
\]
Thus, the positive root lies in \((2,3)\).
Now check negative side:
\[
f(-2)=4+2(a^2+1)-(a^2+2)=4+a^2>0
\]
Since \(f(-2)>0\) and \(f(0)<0\), the negative root lies in \((-2,0)\).
Final Conclusion:
One root lies in \((2,3)\) and the other lies in \((-2,0)\).
\[
\boxed{\text{Option (3)}}
\]