Given equation of the line:
\( ay = x + b \)
Rewriting in standard form:
\( y = \frac{1}{a} x + \frac{b}{a} \)
Finding the slope of the line passing through points (-5, -2) and (4, 7):
\(\text{Slope} = m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - (-2)}{4 - (-5)} = \frac{7 + 2}{4 + 5} = \frac{9}{9} = 1\)
Comparing with the equation \( y = mx + c \), we get:
\(\frac{1}{a} = 1 \Rightarrow a = 1\)
Substituting one point (-5, -2) into \( y = x + \frac{b}{a} \):
\(-2 = (-5) + \frac{b}{1}\)
\(-2 = -5 + b\)
\(b = 3\)
Calculating \( 2a + b \):
\(2(1) + 3 = 2 + 3 = 5\)
Thus, the correct answer is:
5