Let α=a+ib and β²=x+iy
It is given that, |β|=1
\(∴\sqrt{x^2+y^2=1}\)
\(⇒x^2+y^2=1....(i)\)
\(=|\frac{β-α}{1-\bar{α}β}|=|\frac{(x_iy)-(a+ib)}{1-(a-ib)(x+iy)}|\)
\(=|\frac{(x-a)+i(y-b)}{1-(ax+aiy-ibx+by)}|\)
\(=|\frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}|\)
\(=|\frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}|\) \([|\frac{z_1}{z_2}|=|\frac{z_1}{z_2}|]\)
\(=\sqrt\frac{(x-a)^2+i(y-b)^2}{(1-ax-by)^2+i(bx-ay)^2}\)
\(=\frac{\sqrt x^2+a^2-2ax+y^2+b^2-2by}{\sqrt 1+a^2x^2+b^2y^2-ax+2abxy-2by+b^2x^2+a^2y^2-2abxy}\)
\(\frac{\sqrt (x^2+y^2)+a^2+b^2-2ax-2by}{\sqrt 1+a^2(x^2+y^2)+b^2(y^2+x^2)-2ax-2by}\)
\(=\frac{\sqrt 1+a^2+b^2-2ax-2by}{\sqrt1+a^2+b^2-2ax-2by}\) \([Using\,(1)]\)
\(∴|\frac{β-α}{1-\bar{α}β}|=1\)
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
A Complex Number is written in the form
a + ib
where,
The Complex Number consists of a symbol “i” which satisfies the condition i^2 = −1. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.