16 cm
12 cm
To find the focal length of the lens, we use the lens formula:
\(\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\)
where \(f\) is the focal length, \(v\) is the image distance, and \(u\) is the object distance. Given that the object distance \(u = -20\) cm (convention: object distance is negative) and the screen is 50 cm away from the object, the image distance \(v = 20 + 50 = 70\) cm.
Substitute these values into the lens formula:
\( \frac{1}{f} = \frac{1}{70} - \frac{1}{-20} \)
\( \frac{1}{f} = \frac{1}{70} + \frac{1}{20} \)
Convert to a common denominator:
\( \frac{1}{f} = \frac{20 + 70}{1400} = \frac{90}{1400} \)
Therefore, \( f = \frac{1400}{90} = \frac{140}{9} \approx 15.56 \text{ cm} \)
So, the focal length of the lens is 16 cm.
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4 : 3. Their Balance Sheet as at 31st March, 2024 was as follows:
On 1st April, 2024, Diya was admitted in the firm for \( \frac{1}{7} \)th share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.