Step 1: Using the Rydberg formula for wavelength.
The wavelength \(\lambda\) of the photon emitted during an electronic transition is given by the Rydberg formula: \[ \frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right), \] where: \(R\): Rydberg constant, \(n_1\): Final orbit number, \(n_2\): Initial orbit number (\(n_2>n_1\)).
Step 2: For the transition from the 3rd orbit (\(n_2 = 3\)) to the 2nd orbit (\(n_1 = 2\)).
The wavelength is given as \(\lambda\). Substituting into the Rydberg formula: \[ \frac{1}{\lambda} = R \left( \frac{1}{2^2} - \frac{1}{3^2} \right). \] Simplify the terms: \[ \frac{1}{\lambda} = R \left( \frac{1}{4} - \frac{1}{9} \right) = R \left( \frac{9 - 4}{36} \right) = R \cdot \frac{5}{36}. \]
Step 3: For the transition from the 4th orbit (\(n_2 = 4\)) to the 3rd orbit (\(n_1 = 3\)).
The wavelength for this transition, say \(\lambda'\), is: \[ \frac{1}{\lambda'} = R \left( \frac{1}{3^2} - \frac{1}{4^2} \right). \] Simplify the terms: \[ \frac{1}{\lambda'} = R \left( \frac{1}{9} - \frac{1}{16} \right) = R \left( \frac{16 - 9}{144} \right) = R \cdot \frac{7}{144}. \]
Step 4: Relating \(\lambda'\) to \(\lambda\).
Divide the two equations: \[ \frac{1}{\lambda'} \div \frac{1}{\lambda} = \frac{R \cdot \frac{7}{144}}{R \cdot \frac{5}{36}}. \] Simplify: \[ \frac{\lambda}{\lambda'} = \frac{\frac{7}{144}}{\frac{5}{36}} = \frac{7}{144} \cdot \frac{36}{5} = \frac{7 \cdot 36}{144 \cdot 5} = \frac{7}{20}. \] Thus: \[ \lambda' = \frac{20}{7} \lambda. \]
Step 5: Conclusion.
The wavelength of the electron when it jumps from the 4th orbit to the 3rd orbit is: \[ \boxed{\frac{20}{7} \lambda}. \]