For a charged particle in a magnetic field, radius of circular path $r = \frac{m v}{q B}$.
Kinetic energy $KE = \frac{1}{2} m v^2 \implies v = \sqrt{\frac{2 KE}{m}}$.
So, $r = \frac{m \sqrt{\frac{2 KE}{m}}}{q B} = \frac{\sqrt{2 KE m}}{q B}$.
For electron and proton, $KE$ is same, $q$ is same (magnitude), but $m_e \ll m_p$.
Thus, $r \propto \sqrt{m}$, so $r_e<r_p$ (electron has smaller mass, hence smaller radius).