We are given: \[ A_n = \begin{bmatrix} 1 - n & n \\ n & 1 - n \end{bmatrix} \] Step 1: Determinant of \(A_n\) Use the formula for 2×2 determinant: \[ |A_n| = (1 - n)(1 - n) - (n)(n) = (1 - n)^2 - n^2 \] Simplify: \[ |A_n| = 1 - 2n + n^2 - n^2 = 1 - 2n \] Step 2: Sum of determinants from \(n = 1\) to \(2021\) \[ \sum_{n=1}^{2021} |A_n| = \sum_{n=1}^{2021} (1 - 2n) = \sum_{n=1}^{2021} 1 - \sum_{n=1}^{2021} 2n \] First sum: \[ \sum_{n=1}^{2021} 1 = 2021 \] Second sum: \[ \sum_{n=1}^{2021} 2n = 2 \cdot \frac{2021 \cdot (2021 + 1)}{2} = 2021 \cdot 2022 \] Now compute: \[ \sum_{n=1}^{2021} |A_n| = 2021 - 2021 \cdot 2022 = 2021(1 - 2022) = 2021 \cdot (-2021) = \mathbf{-(2021)^2} \]
We are given the matrix \(A_n = \begin{bmatrix} 1-n & n \\ n & 1-n \end{bmatrix}\) and we need to find the sum of the determinants |A1| + |A2| + ... + |A2021|.
First, let's find the determinant of An:
\(|A_n| = (1-n)(1-n) - (n)(n) = (1 - 2n + n^2) - n^2 = 1 - 2n\)
Now we want to find the sum:
S = |A1| + |A2| + ... + |A2021|
S = (1 - 2(1)) + (1 - 2(2)) + ... + (1 - 2(2021))
S = \(\sum_{n=1}^{2021} (1 - 2n)\)
We can split the summation:
S = \(\sum_{n=1}^{2021} 1 - 2 \sum_{n=1}^{2021} n\)
We know that \(\sum_{n=1}^{N} 1 = N\) and \(\sum_{n=1}^{N} n = \frac{N(N+1)}{2}\).
In this case, N = 2021.
So, \(\sum_{n=1}^{2021} 1 = 2021\)
And, \(\sum_{n=1}^{2021} n = \frac{2021(2021+1)}{2} = \frac{2021 * 2022}{2} = 2021 * 1011\)
Therefore,
S = 2021 - 2 * (2021 * 1011)
S = 2021 - 2 * 2043231
S = 2021 - 4086462
S = -4084441
The result -4084441 do not show in option lets rechek it the determinant is \(|A_n| = (1-n)(1-n) - (n)(n) = (1 - 2n + n^2) - n^2 = 1 - 2n\).
So the \(\sum_{n=1}^{2021} (1 - 2n)\) = ( \(\sum_{n=1}^{2021} 1\)) -(2\(\sum_{n=1}^{2021} n\) ) = 2021 - 2 * ( 2021 * 2022 / 2) =2021 - 2021 * 2022 = 2021( 1 - 2022) = 2021(-2021) = - (2021)2
S = -(2021)2
Answer: -(2021)2
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to