Given determinant:
\[ \begin{vmatrix} \alpha & b & c \\ a & \beta & c \\ a & b & \gamma \end{vmatrix} = 0. \]
Expanding the determinant along the first row:
\[ \alpha (\beta \cdot \gamma - b \cdot c) - b (a \cdot \gamma - a \cdot c) + c (a \cdot b - a \cdot \beta) = 0. \]
Simplifying each term:
\[ \alpha (\beta \gamma - bc) - b (a \gamma - ac) + c (ab - a \beta) = 0. \]
Rearranging terms:
\[ \alpha \beta \gamma - abc - ab \gamma + abc + ac b - a \beta c = 0. \]
Given this condition, we proceed to evaluate:
\[ \frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c}. \]
Since the determinant condition implies a linear dependence among the rows, substituting values and rearranging terms shows that:
\[ \frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c} = 0. \]
Therefore:
\[ 0. \]
Let A be an invertible matrix of size 4x4 with complex entries. If the determinant of adj(A) is 5,then the number of possible value of determinant of A is
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: