Given determinant:
\[ \begin{vmatrix} \alpha & b & c \\ a & \beta & c \\ a & b & \gamma \end{vmatrix} = 0. \]
Expanding the determinant along the first row:
\[ \alpha (\beta \cdot \gamma - b \cdot c) - b (a \cdot \gamma - a \cdot c) + c (a \cdot b - a \cdot \beta) = 0. \]
Simplifying each term:
\[ \alpha (\beta \gamma - bc) - b (a \gamma - ac) + c (ab - a \beta) = 0. \]
Rearranging terms:
\[ \alpha \beta \gamma - abc - ab \gamma + abc + ac b - a \beta c = 0. \]
Given this condition, we proceed to evaluate:
\[ \frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c}. \]
Since the determinant condition implies a linear dependence among the rows, substituting values and rearranging terms shows that:
\[ \frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c} = 0. \]
Therefore:
\[ 0. \]
Let A be an invertible matrix of size 4x4 with complex entries. If the determinant of adj(A) is 5,then the number of possible value of determinant of A is
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).