First circle center \(C_1 = (0,0)\), radius \(r_1 = \sqrt{3}\).
Rewrite second circle as
\[
(x-1)^2 + (y+2)^2 = 1,
\]
so center \(C_2 = (1,-2)\), radius \(r_2 = 1\).
External centre of similitude divides \(C_1 C_2\) externally in ratio \(r_1 : r_2 = \sqrt{3} : 1\).
Using section formula,
\[
\alpha = \frac{\sqrt{3} \times 1 - 1 \times 0}{\sqrt{3} - 1} = \frac{\sqrt{3}}{\sqrt{3} - 1},
\beta = \frac{\sqrt{3} \times (-2) - 1 \times 0}{\sqrt{3} - 1} = \frac{-2 \sqrt{3}}{\sqrt{3} - 1}.
\]
Therefore,
\[
\frac{\beta}{\alpha} = \frac{-2 \sqrt{3}}{\sqrt{3}} = -2.
\]