Given the cubic equation \( x^3 + ax^2 + bx + c = 0 \), and \( \alpha, \beta, \gamma \) are its roots.
From Vieta's formulas, we have:
1. Sum of the roots: \( \alpha + \beta + \gamma = -a \)
2. Sum of the products of roots taken two at a time: \( \alpha\beta + \beta\gamma + \gamma\alpha = b \)
3. Product of the roots: \( \alpha\beta\gamma = -c \)
We need to evaluate the expression \( P = (\alpha + \beta - 2\gamma)(\beta + \gamma - 2\alpha)(\gamma + \alpha - 2\beta) \).
From \( \alpha + \beta + \gamma = -a \), we can write:
\( \alpha + \beta = -a - \gamma \)
\( \beta + \gamma = -a - \alpha \)
\( \gamma + \alpha = -a - \beta \)
Substitute these into the expression \( P \):
\( P = ((-a - \gamma) - 2\gamma)((-a - \alpha) - 2\alpha)((-a - \beta) - 2\beta) \)
\( P = (-a - 3\gamma)(-a - 3\alpha)(-a - 3\beta) \)
\( P = -(a + 3\gamma) \cdot -(a + 3\alpha) \cdot -(a + 3\beta) \)
\( P = -(a + 3\alpha)(a + 3\beta)(a + 3\gamma) \)
Let \( Q(x) = (x+3\alpha)(x+3\beta)(x+3\gamma) \).
This is a polynomial whose roots are \( -3\alpha, -3\beta, -3\gamma \).
We know that if \( \alpha, \beta, \gamma \) are the roots of \( f(x) = x^3 + ax^2 + bx + c = 0 \), then \( f(x) = (x-\alpha)(x-\beta)(x-\gamma) \).
Consider a polynomial \( g(y) \) whose roots are \( -3\alpha, -3\beta, -3\gamma \).
If \( y = -3x \), then \( x = -y/3 \).
Substitute \( x = -y/3 \) into the original equation:
\( \left(-\frac{y}{3}\right)^3 + a\left(-\frac{y}{3}\right)^2 + b\left(-\frac{y}{3}\right) + c = 0 \)
\( -\frac{y^3}{27} + a\frac{y^2}{9} - b\frac{y}{3} + c = 0 \)
Multiply by -27 to clear the denominators and make the leading coefficient positive:
\( y^3 - 3ay^2 + 9by - 27c = 0 \)
The roots of this equation are \( -3\alpha, -3\beta, -3\gamma \).
So, the polynomial \( (y - (-3\alpha))(y - (-3\beta))(y - (-3\gamma)) = (y+3\alpha)(y+3\beta)(y+3\gamma) \) is equal to \( y^3 - 3ay^2 + 9by - 27c \).
We need to evaluate \( -(a + 3\alpha)(a + 3\beta)(a + 3\gamma) \).
This is \( -Q(-a) \) where \( Q(y) = (y+3\alpha)(y+3\beta)(y+3\gamma) = y^3 - 3ay^2 + 9by - 27c \).
So, \( P = -[ (-a)^3 - 3a(-a)^2 + 9b(-a) - 27c ] \)
\( P = -[ -a^3 - 3a(a^2) - 9ab - 27c ] \)
\( P = -[ -a^3 - 3a^3 - 9ab - 27c ] \)
\( P = -[ -4a^3 - 9ab - 27c ] \)
\( P = 4a^3 + 9ab + 27c \)
Let's recheck the substitution.
The expression is \( -(a+3\alpha)(a+3\beta)(a+3\gamma) \).
This is \( -P_0(a) \) where \( P_0(x) = (x+3\alpha)(x+3\beta)(x+3\gamma) \).
We constructed the polynomial \( y^3 - 3ay^2 + 9by - 27c = (y - (-3\alpha))(y - (-3\beta))(y - (-3\gamma)) \).
Let \( P(y) = y^3 - 3ay^2 + 9by - 27c \).
Then \( P(y) = (y+3\alpha)(y+3\beta)(y+3\gamma) \).
So we need to evaluate \( -P(a) \).
\( P(a) = (a)^3 - 3a(a)^2 + 9b(a) - 27c \)
\( P(a) = a^3 - 3a^3 + 9ab - 27c \)
\( P(a) = -2a^3 + 9ab - 27c \)
Therefore, \( (\alpha + \beta - 2\gamma)(\beta + \gamma - 2\alpha)(\gamma + \alpha - 2\beta) = -P(a) \)
\( = -(-2a^3 + 9ab - 27c) \)
\( = 2a^3 - 9ab + 27c \)