Step 1: Finding direction cosines of the angular bisector
The formula for the direction cosines of the angular bisector of two lines with direction ratios \( (l_1, m_1, n_1) \) and \( (l_2, m_2, n_2) \) is:
\[
\alpha = \frac{l_1}{\sqrt{l_1^2 + m_1^2 + n_1^2}} + \frac{l_2}{\sqrt{l_2^2 + m_2^2 + n_2^2}}
\]
Similarly, we compute \( \beta \) and \( \gamma \), then find \( (\alpha + \beta + \gamma)^2 \).
Using calculations, we get:
\[
(\alpha + \beta + \gamma)^2 = 2
\]