Given the quadratic equation \(x^2 - 6x - 2 = 0\), let's find the roots \(\alpha\) and \(\beta\) using the quadratic formula:
\(\alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
where \(a = 1\), \(b = -6\), \(c = -2\).
Calculate the discriminant:
\(b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot (-2) = 36 + 8 = 44\).
Thus, the roots are:
\(\alpha = \frac{6 + \sqrt{44}}{2}\), \(\beta = \frac{6 - \sqrt{44}}{2}\).
Now, we need to calculate \(a_n = \alpha^n - \beta^n\).
Given formula:
\(a_n = \alpha^n - \beta^n\), \(a_{10} - 2a_8 = \alpha^{10} - \beta^{10} - 2(\alpha^8 - \beta^8)\)
Note the recurrence relation:
\(a_{n+2} = 6a_{n+1} + 2a_n\), which comes from the characteristic equation of the original quadratic.
Use this to solve:
\(a_{10} = 6a_9 + 2a_8\)
\(a_{10} - 2a_8 = 6a_9 + 2a_8 - 2a_8 = 6a_9\)
Therefore:
\(\frac{a_{10} - 2a_8}{2a_9} = \frac{6a_9}{2a_9} = 3\)
Thus, the value of \(\frac{a_{10} - 2a_8}{2a_9}\) is \(3\).