Given the quadratic equation \( 2x^2 - 4x + 3 = 0 \), for roots \( \alpha \) and \( \beta \), by Vieta's formulas:
$$ \alpha + \beta = -\frac{-4}{2} = 2 $$
$$ \alpha \beta = \frac{3}{2} $$
We need to find \( \alpha^2 + \beta^2 \) and \( \alpha^4 + \beta^4 \).
$$ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta = (2)^2 - 2\left(\frac{3}{2}\right) = 4 - 3 = 1 $$
Now, for \( \alpha^4 + \beta^4 \):
$$ \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2 = (1)^2 - 2\left(\frac{3}{2}\right)^2 = 1 - 2\left(\frac{9}{4}\right) = 1 - \frac{9}{2} = \frac{2 - 9}{2} = -\frac{7}{2} $$
Now substitute these values into the expression:
$$ \frac{2(\alpha^4 + \beta^4) + 3(\alpha^2 + \beta^2)}{\alpha + \beta} = \frac{2\left(-\frac{7}{2}\right) + 3(1)}{2} = \frac{-7 + 3}{2} = \frac{-4}{2} = -2 $$