Given: AD and PM are medians of triangles ABC and PQR
ΔABC ~ ΔPQR
To Prove: \(\frac{AB}{PQ}=\frac{AD}{PM}\)
Proof: It is given that ∆ABC ∼ ∆PQR

We know that the corresponding sides of similar triangles are in proportion.
∴\(\frac{AB}{PQ}=\frac{AC}{PR}=\frac{BC}{QR}\) … (1)
Also, \(\angle\)A = \(\angle\)P, \(\angle\)B = \(\angle\)Q, \(\angle\)C = \(\angle\)R … (2)
Since AD and PM are medians, they will divide their opposite sides.
∴BD=\(\frac{BC}{2}\) and QM=\(\frac{QR}{2}\) … (3)
From equations (1) and (3), we obtain
\(\frac{AB}{PQ}=\frac{BD}{QM}\) … (4)
In ∆ABD and ∆PQM,
\(\angle\)B = \(\angle\)Q [Using equation (2)]
\(\frac{AB}{PQ}=\frac{BD}{QM}\)[Using equation (4)]
∴ ∆ABD ∼ ∆PQM (By SAS similarity criterion)
⇒ \(\frac{AB}{PQ}=\frac{BD}{QM}=\frac{AD}{PM}\)
\(\therefore\frac{AB}{PQ}=\frac{AD}{PM}\)
Hence Proved
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
"ई काशी छोड़कर कहीं न जाएँ" बिस्मिल्ला खाँ के मन में काशी के प्रति विशेष अनुराग के क्या कारण थे ?