Given: AD and PM are medians of triangles ABC and PQR
ΔABC ~ ΔPQR
To Prove: \(\frac{AB}{PQ}=\frac{AD}{PM}\)
Proof: It is given that ∆ABC ∼ ∆PQR
We know that the corresponding sides of similar triangles are in proportion.
∴\(\frac{AB}{PQ}=\frac{AC}{PR}=\frac{BC}{QR}\) … (1)
Also, \(\angle\)A = \(\angle\)P, \(\angle\)B = \(\angle\)Q, \(\angle\)C = \(\angle\)R … (2)
Since AD and PM are medians, they will divide their opposite sides.
∴BD=\(\frac{BC}{2}\) and QM=\(\frac{QR}{2}\) … (3)
From equations (1) and (3), we obtain
\(\frac{AB}{PQ}=\frac{BD}{QM}\) … (4)
In ∆ABD and ∆PQM,
\(\angle\)B = \(\angle\)Q [Using equation (2)]
\(\frac{AB}{PQ}=\frac{BD}{QM}\)[Using equation (4)]
∴ ∆ABD ∼ ∆PQM (By SAS similarity criterion)
⇒ \(\frac{AB}{PQ}=\frac{BD}{QM}=\frac{AD}{PM}\)
\(\therefore\frac{AB}{PQ}=\frac{AD}{PM}\)
Hence Proved
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम