Given that \( AB = 5i + 4j - 3k \) and \( AD = 3i + 2j - k \), we want to find \( BD \).
We know that:
\[
BD = AB + AD
\]
Substituting the values of \( AB \) and \( AD \):
\[
BD = (5i + 4j - 3k) + (3i + 2j - k)
\]
Now, adding the components:
\[
BD = (5i + 3i) + (4j + 2j) + (-3k - k)
\]
\[
BD = 8i + 6j - 4k
\]
Thus, the correct answer is \( 8i + 6j - 4k \).