We are given the matrix equation:
\(AB = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}\)
and
\(A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}\)
To find \( B \), we can multiply both sides of the equation \( AB = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \) by \( A^{-1} \) on the right. This gives:
\(AB \cdot A^{-1} = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \cdot A^{-1}\)
Since \( A \cdot A^{-1} = I \) (the identity matrix), this simplifies to:
\(B = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \cdot A^{-1}\)
Now perform the matrix multiplication:
\(B = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}\)
The result of the multiplication is:
\(B = \begin{bmatrix} (4 \cdot 3 + 3 \cdot -1) & (4 \cdot -2 + 3 \cdot 1) \\ (5 \cdot 3 + 4 \cdot -1) & (5 \cdot -2 + 4 \cdot 1) \end{bmatrix}\)
\(B = \begin{bmatrix} (12 - 3) & (-8 + 3) \\ (15 - 4) & (-10 + 4) \end{bmatrix}\)
\(B = \begin{bmatrix} 9 & -5 \\ 11 & -6 \end{bmatrix}\)
The correct value of \( B \) is:
\(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}\)
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is: