We are given the matrix equation:
\(AB = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}\)
and
\(A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}\)
To find \( B \), we can multiply both sides of the equation \( AB = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \) by \( A^{-1} \) on the right. This gives:
\(AB \cdot A^{-1} = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \cdot A^{-1}\)
Since \( A \cdot A^{-1} = I \) (the identity matrix), this simplifies to:
\(B = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \cdot A^{-1}\)
Now perform the matrix multiplication:
\(B = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}\)
The result of the multiplication is:
\(B = \begin{bmatrix} (4 \cdot 3 + 3 \cdot -1) & (4 \cdot -2 + 3 \cdot 1) \\ (5 \cdot 3 + 4 \cdot -1) & (5 \cdot -2 + 4 \cdot 1) \end{bmatrix}\)
\(B = \begin{bmatrix} (12 - 3) & (-8 + 3) \\ (15 - 4) & (-10 + 4) \end{bmatrix}\)
\(B = \begin{bmatrix} 9 & -5 \\ 11 & -6 \end{bmatrix}\)
The correct value of \( B \) is:
\(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}\)