To solve for the slit width \( x \), we use the formula for the first minima of a single slit diffraction pattern:
\( x \sin(\theta) = n \lambda \)
where:
First, convert the wavelength from Ångströms to meters:
\( \lambda = 6500 \times 10^{-10} \) m
Substitute the values into the equation and solve for \( x \):
\( x \sin(30^\circ) = 1 \times 6500 \times 10^{-10} \)
We know \( \sin(30^\circ) = 0.5 \). Thus:
\( x \cdot 0.5 = 6500 \times 10^{-10} \)
Solve for \( x \):
\( x = \frac{6500 \times 10^{-10}}{0.5} \)
\( x = 13000 \times 10^{-10} \)
Convert \( x \) to micrometers (µm), where \( 1 \) m = \( 10^6 \) µm:
\( x = 13000 \times 10^{-10} \times 10^6 \) µm
\( x = 1.3 \) µm
Thus, the slit width \( x \) is \( 1.3 \) µm.
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))