To solve for the slit width \( x \), we use the formula for the first minima of a single slit diffraction pattern:
\( x \sin(\theta) = n \lambda \)
where:
First, convert the wavelength from Ångströms to meters:
\( \lambda = 6500 \times 10^{-10} \) m
Substitute the values into the equation and solve for \( x \):
\( x \sin(30^\circ) = 1 \times 6500 \times 10^{-10} \)
We know \( \sin(30^\circ) = 0.5 \). Thus:
\( x \cdot 0.5 = 6500 \times 10^{-10} \)
Solve for \( x \):
\( x = \frac{6500 \times 10^{-10}}{0.5} \)
\( x = 13000 \times 10^{-10} \)
Convert \( x \) to micrometers (µm), where \( 1 \) m = \( 10^6 \) µm:
\( x = 13000 \times 10^{-10} \times 10^6 \) µm
\( x = 1.3 \) µm
Thus, the slit width \( x \) is \( 1.3 \) µm.
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.