Given:
\[
a\sec\theta + b\tan\theta = m \quad \text{...(1)}\\
b\sec\theta + a\tan\theta = n \quad \text{...(2)}
\]
We are to prove:
\[
a^2 + n^2 = b^2 + m^2
\]
Step 1: Square both equations
Square equation (1):
\[
(a\sec\theta + b\tan\theta)^2 = m^2\\
\Rightarrow a^2\sec^2\theta + 2ab\sec\theta\tan\theta + b^2\tan^2\theta = m^2 \quad \text{...(3)}
\]
Square equation (2):
\[
(b\sec\theta + a\tan\theta)^2 = n^2\\
\Rightarrow b^2\sec^2\theta + 2ab\sec\theta\tan\theta + a^2\tan^2\theta = n^2 \quad \text{...(4)}
\]
Step 2: Add equations (3) and (4)
Add LHS and RHS of (3) and (4):
\[
a^2\sec^2\theta + b^2\tan^2\theta + b^2\sec^2\theta + a^2\tan^2\theta + 2(2ab\sec\theta\tan\theta) = m^2 + n^2
\]
Group like terms:
\[
a^2(\sec^2\theta + \tan^2\theta) + b^2(\sec^2\theta + \tan^2\theta) + 4ab\sec\theta\tan\theta = m^2 + n^2
\]
Factor:
\[
(a^2 + b^2)(\sec^2\theta + \tan^2\theta) + 4ab\sec\theta\tan\theta = m^2 + n^2 \quad \text{...(5)}
\]
Step 3: Now subtract equation (3) from (4)
Equation (4) - Equation (3):
\[
[b^2\sec^2\theta + a^2\tan^2\theta + 2ab\sec\theta\tan\theta] - [a^2\sec^2\theta + b^2\tan^2\theta + 2ab\sec\theta\tan\theta] = n^2 - m^2
\]
Simplify:
\[
(b^2 - a^2)(\sec^2\theta - \tan^2\theta) = n^2 - m^2 \quad \text{...(6)}
\]
Step 4: Use identity
We know:
\[
\sec^2\theta - \tan^2\theta = 1
\Rightarrow (b^2 - a^2)(1) = n^2 - m^2
\Rightarrow b^2 - a^2 = n^2 - m^2
\]
Bring terms to one side:
\[
a^2 + n^2 = b^2 + m^2
\]
Final Answer:
\[
\boxed{a^2 + n^2 = b^2 + m^2}
\quad \text{(Proved)}
\]