We are given the function:
\[
f(x) = \frac{ax + \sqrt{a^2 - x^2}}{bx}
\]
where \( a \) and \( b \) are constants.
Step 1: Determine the domain of \( f(x) \)
- The square root expression \( \sqrt{a^2 - x^2} \) implies: \( a^2 - x^2 \geq 0 \Rightarrow x \in [-a, a] \)
- The denominator \( bx \neq 0 \Rightarrow x \neq 0 \)
So, the domain of \( f(x) \) is:
\[
x \in [-a, a] \setminus \{0\}
\]
Step 2: Test for injectivity (One-One)
Suppose \( f(x_1) = f(x_2) \).
Then:
\[
\frac{ax_1 + \sqrt{a^2 - x_1^2}}{bx_1} = \frac{ax_2 + \sqrt{a^2 - x_2^2}}{bx_2}
\]
This equation does not imply \( x_1 = x_2 \), and is not generally solvable to prove injectivity. Hence, \( f \) is not one-one.
Example:
Take \( a = 1, b = 1 \), then:
\[
f\left(\frac{1}{2}\right) = \frac{\frac{1}{2} + \sqrt{1 - \left(\frac{1}{2}\right)^2}}{\frac{1}{2}} = \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 1 + \sqrt{3}
\]
\[
f\left(-\frac{1}{2}\right) = \frac{-\frac{1}{2} + \sqrt{1 - \left(\frac{1}{2}\right)^2}}{-\frac{1}{2}} = \frac{\frac{\sqrt{3} - 1}{2}}{-\frac{1}{2}} = -( \sqrt{3} - 1 ) = 1 - \sqrt{3}
\]
These are not equal, but no general injectivity is evident. Try plotting or checking symmetry — ultimately, \( f \) fails the horizontal line test across its domain.
Conclusion: Not one-one.
Step 3: Test for surjectivity (Onto)
Let us observe the function behavior:
\[
f(x) = \frac{a}{b} + \frac{\sqrt{a^2 - x^2}}{bx}
\]
As \( x \to 0^+ \), \( f(x) \to +\infty \);
As \( x \to 0^- \), \( f(x) \to -\infty \);
As \( x \to \pm a \), the square root \( \to 0 \), and the value tends to \( \frac{a}{b} \)
Hence, \( f(x) \) sweeps all values in \( \mathbb{R} \), depending on \( x \)'s sign and proximity to 0, making it onto.