Step 1: Understanding the Concept
The problem deals with a Poisson distribution. We are given a relationship between the probabilities of two different outcomes, which allows us to find the parameter ($\lambda$) of the distribution. Once we have $\lambda$, we can calculate the probability of any other outcome.
Step 2: Key Formula or Approach
The probability mass function (PMF) for a Poisson distribution with parameter $\lambda$ is:
\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \]
1. Set up the given equation: $P(X=3) = P(X=5)$.
2. Substitute the PMF formula into the equation.
3. Solve for the parameter $\lambda$.
4. Use the found value of $\lambda$ to calculate $P(X=4)$.
Step 3: Detailed Explanation
1. Set up the equation:
We are given $P(X=3) = P(X=5)$.
Using the Poisson PMF:
\[ \frac{e^{-\lambda} \lambda^3}{3!} = \frac{e^{-\lambda} \lambda^5}{5!} \]
2. Solve for $\lambda$:
Since $\lambda$ (the mean rate) must be positive, we know $\lambda \neq 0$, and $e^{-\lambda} \neq 0$. We can cancel these terms from both sides.
\[ \frac{\lambda^3}{3!} = \frac{\lambda^5}{5!} \]
\[ \frac{1}{3!} = \frac{\lambda^2}{5!} \]
Rearrange to solve for $\lambda^2$:
\[ \lambda^2 = \frac{5!}{3!} = \frac{5 \times 4 \times 3!}{3!} = 5 \times 4 = 20 \]
So, $\lambda = \sqrt{20}$.
3. Calculate P(X=4):
Now we need to find $P(X=4)$ using $\lambda = \sqrt{20}$ and $\lambda^2=20$.
\[ P(X=4) = \frac{e^{-\lambda} \lambda^4}{4!} \]
\[ P(X=4) = \frac{e^{-\sqrt{20}} (\lambda^2)^2}{24} = \frac{e^{-\sqrt{20}} (20)^2}{24} \]
\[ P(X=4) = \frac{e^{-\sqrt{20}} \cdot 400}{24} \]
Simplify the fraction $\frac{400}{24}$:
\[ \frac{400}{24} = \frac{100}{6} = \frac{50}{3} \]
So,
\[ P(X=4) = \frac{50}{3} e^{-\sqrt{20}} \]
This matches the structure of the first option provided in the OCR, which is $\frac{50}{3e^{\sqrt{20}}}$.
Step 4: Final Answer
The parameter of the Poisson distribution is $\lambda = \sqrt{20}$. The probability of $X=4$ is $P(X=4) = \frac{50}{3}e^{-\sqrt{20}}$.