Step 1: Definitions.
The geoid is an equipotential surface of Earth’s gravity field, representing mean sea level. The reference ellipsoid is a smooth mathematical surface approximating the shape of the Earth.
Step 2: Ideal conditions.
If the planet has:
then the gravitational potential would be smooth and symmetrical, and the geoid would coincide with the reference ellipsoid.
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \] 
The mean of the posterior distribution is (Answer in integer)
Consider a medium of uniform resistivity with a pair of source and sink electrodes separated by a distance \( L \), as shown in the figure. The fraction of the input current \( (I) \) that flows horizontally \( (I_x) \) across the median plane between depths \( z_1 = \frac{L}{2} \) and \( z_2 = \frac{L\sqrt{3}}{2} \), is given by \( \frac{I_x}{I} = \frac{L}{\pi} \int_{z_1}^{z_2} \frac{dz}{(L^2/4 + z^2)} \). The value of \( \frac{I_x}{I} \) is equal to 
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)