Step 1: Given data.
Diameter of the tank $= 3 \, \text{m}$
Radius $r = \frac{3}{2} = 1.5 \, \text{m}$
Rate of draining water $= 3 \dfrac{4}{7} = \frac{25}{7} \, \text{litres per second}$
We have to find the time to drain half of the tank.
Step 2: Volume of a hemisphere.
\[
V = \frac{2}{3}\pi r^3
\]
Substitute $r = 1.5 \, \text{m} = 150 \, \text{cm}$:
Convert volume into litres.
1 m³ = 1000 litres.
\[
V = \frac{2}{3}\pi (1.5)^3 = \frac{2}{3} \times 3.14 \times 3.375 = 7.07 \, \text{m}^3
\]
\[
V = 7.07 \times 1000 = 7070 \, \text{litres}
\]
Step 3: Half of the volume.
\[
\text{Half volume} = \frac{7070}{2} = 3535 \, \text{litres}
\]
Step 4: Find the time to drain.
\[
\text{Rate} = \frac{25}{7} \, \text{litres/second}
\]
\[
\text{Time} = \frac{\text{Volume}}{\text{Rate}} = \frac{3535}{\frac{25}{7}} = 3535 \times \frac{7}{25} = 990.8 \, \text{seconds}
\]
\[
\text{Time} = \frac{990.8}{60} = 16.5 \, \text{minutes (approx.)}
\]
Step 5: Conclusion.
\[
\boxed{\text{Time required} = 16.5 \, \text{minutes (approx.)}}
\]