Step 1: Find Direction Ratios of Line \( L \)
The direction cosines \( l, m, n \) of line \( L \) are given by:
\[
m = \cos\frac{\pi}{3}, \quad n = \cos\frac{\pi}{4}.
\]
\[
m = \frac{1}{2}, \quad n = \frac{1}{\sqrt{2}}.
\]
Using the identity:
\[
l^2 + m^2 + n^2 = 1,
\]
\[
l^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = 1.
\]
\[
l^2 + \frac{1}{4} + \frac{1}{2} = 1.
\]
\[
l^2 + \frac{3}{4} = 1.
\]
\[
l^2 = \frac{1}{4} \Rightarrow l = \frac{1}{2}.
\]
Thus, the direction ratios of \( L \) are proportional to:
\[
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}} \right).
\]
Step 2: Find the Angle Between the Two Lines
The direction ratios of the second line are \( (1,1,1) \). The angle \( \theta \) between the lines is given by:
\[
\cos\theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}}.
\]
Substituting values:
\[
\cos\theta = \frac{\left(\frac{1}{2} \times 1\right) + \left(\frac{1}{2} \times 1\right) + \left(\frac{1}{\sqrt{2}} \times 1\right)}{\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} \cdot \sqrt{1^2 + 1^2 + 1^2}}.
\]
\[
= \frac{\frac{1}{2} + \frac{1}{2} + \frac{1}{\sqrt{2}}}{\sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{2}} \cdot \sqrt{3}}.
\]
\[
= \frac{1 + \frac{1}{\sqrt{2}}}{\sqrt{1} \cdot \sqrt{3}} = \frac{\sqrt{2} + 1}{\sqrt{6}}.
\]
Step 3: Conclusion
Thus, the correct answer is:
\[
\mathbf{\cos^{-1} \left( \frac{\sqrt{2}+1}{\sqrt{6}} \right)}.
\]