We are given that:
\[
A = \left( \begin{matrix} 1 & 2
0 & 1 \end{matrix} \right), \quad P = \left( \begin{matrix} \cos \theta & \sin \theta
-\sin \theta & \cos \theta \end{matrix} \right), \quad Q = P^T A P
\]
Now, let's compute \( PQ^{2014} \). Since \( Q = P^T A P \), we can substitute and calculate:
\[
Q^{2014} = (P^T A P)^{2014}
\]
By properties of matrix powers, this simplifies as:
\[
Q^{2014} = P^T A^{2014} P
\]
Thus, \( PQ^{2014} \) is:
\[
PQ^{2014} = P \cdot P^T A^{2014} P
\]
Since \( P P^T = I \) (the identity matrix), the expression simplifies to:
\[
PQ^{2014} = A^{2014}
\]
Now, applying the given value of \( A \):
\[
A^{2014} = \left( \begin{matrix} 1 & 2^{2014}
0 & 1 \end{matrix} \right)
\]
Thus, the correct answer is option (B)