Step 1: Use the direction cosine formula
The cosine of the angle \( a \) made by a vector \( \overrightarrow{a} \) with the positive x-axis is given by: \[ \cos a = \frac{a_x}{|\overrightarrow{a}|} \] where \( a_x \) is the x-component of \( \overrightarrow{a} \).
Step 2: Compute the magnitude of \( \overrightarrow{a} \)
Given: \[ \overrightarrow{a} = 5\hat{i} + 3\hat{j} + 4\hat{k} \] The magnitude is: \[ |\overrightarrow{a}| = \sqrt{5^2 + 3^2 + 4^2} \] \[ = \sqrt{25 + 9 + 16} = \sqrt{50} = 5\sqrt{2} \]
Step 3: Compute \( \cos a \)
\[ \cos a = \frac{5}{5\sqrt{2}} \] \[ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \]
Final Answer: \( \cos a \) is \( \frac{\sqrt{2}}{2} \).
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}