Step 1: Use the direction cosine formula
The cosine of the angle \( a \) made by a vector \( \overrightarrow{a} \) with the positive x-axis is given by: \[ \cos a = \frac{a_x}{|\overrightarrow{a}|} \] where \( a_x \) is the x-component of \( \overrightarrow{a} \).
Step 2: Compute the magnitude of \( \overrightarrow{a} \)
Given: \[ \overrightarrow{a} = 5\hat{i} + 3\hat{j} + 4\hat{k} \] The magnitude is: \[ |\overrightarrow{a}| = \sqrt{5^2 + 3^2 + 4^2} \] \[ = \sqrt{25 + 9 + 16} = \sqrt{50} = 5\sqrt{2} \]
Step 3: Compute \( \cos a \)
\[ \cos a = \frac{5}{5\sqrt{2}} \] \[ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \]
Final Answer: \( \cos a \) is \( \frac{\sqrt{2}}{2} \).
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |