We know that the adjugate of a matrix \( A \), denoted \( \text{adj}(A) \), is related to the inverse of \( A \) by the following formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( A^{-1} = \frac{1}{2} \begin{bmatrix} -10 & -4 \\ 2 & 1 \end{bmatrix} \), we can find \( \text{adj}(A) \) as follows: \[ \text{adj}(A) = 2 \cdot A^{-1} = 2 \cdot \frac{1}{2} \begin{bmatrix} -10 & -4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 4 \\ -2 & -1 \end{bmatrix} \]
The correct option is (B) : \(\begin{bmatrix} 10&4\\-2&-1\end{bmatrix}\)
We are given that \(A^{-1}=\frac{1}{2}\begin{bmatrix} -10& -4\\ 2& 1\end{bmatrix}\).
We know that \(A^{-1} = \frac{adj(A)}{|A|}\) which means \(adj(A) = |A| A^{-1}\).
First, let's find \(A^{-1}\):
\(A^{-1}=\frac{1}{2}\begin{bmatrix} -10& -4\\ 2& 1\end{bmatrix} = \begin{bmatrix} -5& -2\\ 1& \frac{1}{2}\end{bmatrix}\)
Now, let's find the determinant of \(A^{-1}\):
\(|A^{-1}| = (-5)(\frac{1}{2}) - (-2)(1) = -\frac{5}{2} + 2 = -\frac{1}{2}\)
Since \(|A^{-1}| = \frac{1}{|A|}\), we have \(|A| = \frac{1}{|A^{-1}|} = \frac{1}{-\frac{1}{2}} = -2\).
Now, we can find adj(A) using the formula \(adj(A) = |A| A^{-1}\):
\(adj(A) = -2 \cdot \frac{1}{2}\begin{bmatrix} -10& -4\\ 2& 1\end{bmatrix} = -1 \cdot \begin{bmatrix} -10& -4\\ 2& 1\end{bmatrix} = \begin{bmatrix} 10& 4\\ -2& -1\end{bmatrix}\)
Therefore, \(adj(A) = \begin{bmatrix} 10& 4\\ -2& -1\end{bmatrix}\).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is: