Question:

If a is $\frac{3}2$ times of b, b is $\frac{3}{4}^{th}$ of c and d is $\frac{1}4 ^{th}$ of c, the ratio of a and d is

Updated On: Dec 30, 2025
  • 8:3
  • 9:1
  • 8:1
  • 9:2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve this problem, we need to find the ratio of \(a\) to \(d\) given the relationships between \(a\)\(b\)\(c\), and \(d\)

  1. First, express \(a\) in terms of \(b\):
    • \(a = \frac{3}{2} \times b\)
  2. Next, express \(b\) in terms of \(c\):
    • \(b = \frac{3}{4} \times c\)
  3. Now, express \(d\) in terms of \(c\):
    • \(d = \frac{1}{4} \times c\)
  4. Now substitute the expressions for \(b\) and \(d\) back to express \(a\) in terms of \(d\):
    • Substitute \(b = \frac{3}{4} \times c\) into \(a = \frac{3}{2} \times b\):
    • \(a = \frac{3}{2} \times \left( \frac{3}{4} \times c \right) = \frac{9}{8} \times c\)
  5. Now use \(d = \frac{1}{4} \times c\):
    • Express \(c\) in terms of \(d\)\(c = 4 \times d\)
    • Substituting in \(a = \frac{9}{8} \times c\), we have \(a = \frac{9}{8} \times (4 \times d)\).
    • Therefore, \(a = \frac{9}{8} \times 4 \times d = \frac{36}{8} \times d = \frac{9}{2} \times d\)
  6. Finally, calculate the ratio of \(a\) to \(d\):
    • The ratio \(\frac{a}{d} = \frac{9/2 \times d}{d} = \frac{9}{2}\)
    • Therefore, the ratio of \(a\) to \(d\) is \(9:2\).

The correct option is 9:2.

Was this answer helpful?
0
0

Questions Asked in CMAT exam

View More Questions